Filter Design for Simultaneous Localization and Map Building (SLAM)

نویسندگان

  • Christian Schlegel
  • Thomas Kämpke
چکیده

This paper deals with the fusion of random variables when cross covariances are unknown. This is a vital problem in nearly every real world application since cross covariances are often impossible to obtain but also cannot be ignored. We provide a rigorous derivation of the fusion equations which are also known as covariance intersection. This approach allows us to derive an iterative scheme for simultaneous mapping and localization. The algorithm can also be used for multi-robot explorations where highly correlated decentralized maps have to be fused to form a consistent global map. We show mapping and localization results based on dense laser range scans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Constant/Linear Time Simultaneous Localization and Mapping for Dense Maps

The challenge of building a map of an unknown environment while simultaneously localizing accurately within a partially constructed map is often referred to as the SLAM (Simultaneous Localization and Mapping) problem. We present an approach to the SLAM problem that is capable of building dense, metric maps of complex domains. In a significant improvement over previous work, our particle filter ...

متن کامل

Recent advances in simultaneous localization and map-building using computer vision

Simultaneous localization and map-building (SLAM) continues to draw considerable attention in the robotics community due to the advantages it can offer in building autonomous robots. It examines the ability of an autonomous robot starting in an unknown environment to incrementally build an environment map and simultaneously localize itself within this map. Recent advances in computer vision hav...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002